





# Physics beyond SM with Kaons from NA62

MICHELE CORVINO, UNIVERSITÀ E INFN NAPOLI

31° RENCONTRES DE BLOIS, 04/06/2019

# Outline

- Introduction: the NA62 experiment at CERN
- $K^+ \to \pi^+ \nu \overline{\nu}$
- Search for invisible vector bosons
- Search for LNV processes in kaon decays
- Conclusions

# The NA62 experiment at CERN

- Fixed target experiment
- Kaon decays in flight
- Main goal: measurement of BR( $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ ) at 10% precision level



Primary beam of protons from SPS (400 GeV)

Secondary beam of hadrons (75 GeV, 800 MHz)

- Pions (70%)
- Protons (23%)
- Kaons (6%)
- Muons (0.7%)

#### NA62 schematic layout



Keystones:

•O(100 ps) timing between sub-detectors •O(10<sup>4</sup>) kinematic background suppression • > 10<sup>7</sup> muon suppression • > 10<sup>7</sup>  $\pi^0$  suppression

More details here: https://arxiv.org/abs/1703.08501

#### Theoretical motivation for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ search

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$  is a FCNC process, very suppressed by CKM



Short distance contributions, dominated by t loop

Theoretical prediction [Buras et al., JHEP 1511 (2015)]:

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$$

#### Theoretical motivation for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ search

 $K \rightarrow \pi v \overline{v}$  decays are very sensitive to New Physics (NP) beyond Standard Model

The correlation between these branching ratios is predicted by different models like:



- Randall-Sundrum
- Littlest Higgs with T parity
- Minimal Flavour Violation

 $K \rightarrow \pi \nu \overline{\nu}$  decays are very powerful tools to probe NP sector

### $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ experimental state of the art

Measured value [Phys. Rev. D 79, 092004 (2009)]:

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ 



All the measurements have been performed using stopped kaons

$$K^+ \rightarrow \pi^+ \nu \bar{\nu}$$
 analysis strategy

#### **Decay in flight technique**

$$m_{miss}^2 = (P_K - P_\pi)^\mu (P_K - P_\pi)_\mu$$





#### Blind analysis based on:

- Kinematic rejection
- $15 \ GeV/c < P_{\pi} < 35 \ GeV/c$
- π ID
- Photon veto

#### Single Event Sensitivity (SES) in 2016 dataset

$$SES = \frac{1}{N_K} \cdot \frac{1}{\epsilon_{\pi\nu\overline{\nu}}} = \frac{A_{\pi\pi}BR_{\pi\pi}}{N_{\pi\pi}D} \cdot \frac{1}{A_{\pi\nu\nu}\epsilon_{trigger}} \epsilon_{R\nu}$$
Acceptance
$$K^+ \to \pi^+\pi^0$$
Random veto
sample used for
normalization
Trigger efficiency

 $N_K = (1.21 \pm 0.02) \times 10^{11}$ 

$$SES = (3.15 \pm 0.01_{stat} \pm 0.24_{syst}) \times 10^{-10}$$
$$N_{\pi\nu\nu}^{exp} = 0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$$

| Source                             | $\delta SES~(10^{-10})$ |
|------------------------------------|-------------------------|
| Random veto                        | 0.17                    |
| $N_K$                              | 0.05                    |
| Trigger efficiency                 | 0.04                    |
| Definition of $\pi^+\pi^0$ region  | 0.10                    |
| Momentum spectrum                  | 0.01                    |
| Simulation of $\pi^+$ interactions | 0.09                    |
| Extra activity                     | 0.02                    |
| GTK Pile up                        | 0.02                    |
| Total                              | 0.24                    |

## Results from 2016 analysis

| Process                       | Number of expected events                                 |
|-------------------------------|-----------------------------------------------------------|
| $K^+ 	o \pi^+  u ar u$ (SM)   | $0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$ |
| Total expected background     | $0.15 \pm 0.09_{stat} \pm 0.01_{syst}$                    |
| $K^+ \to \pi^+ \pi^0(\gamma)$ | $0.064 \pm 0.007_{stat} \pm 0.006_{syst}$                 |
| $K^+ \to \mu^+ \nu(\gamma)$   | $0.020 \pm 0.003_{stat} \pm 0.003_{syst}$                 |
| $K^+ \to \pi^+ \pi^- e^+ \nu$ | $0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$        |
| $K^+ 	o \pi^+ \pi^+ \pi^-$    | $0.002 \pm 0.001_{stat} \pm 0.002_{syst}$                 |
| Upstream background           | $0.050^{+0.090}_{-0.030} _{stat}$                         |



# Results from 2016 analysis

| Dresses                       |                                                           |
|-------------------------------|-----------------------------------------------------------|
| Process                       | Number of expected events                                 |
| $K^+ 	o \pi^+  u ar u$ (SM)   | $0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$ |
| Total expected background     | $0.15 \pm 0.09_{stat} \pm 0.01_{syst}$                    |
| $K^+ \to \pi^+ \pi^0(\gamma)$ | $0.064 \pm 0.007_{stat} \pm 0.006_{syst}$                 |
| $K^+ \to \mu^+ \nu(\gamma)$   | $0.020 \pm 0.003_{stat} \pm 0.003_{syst}$                 |
| $K^+ \to \pi^+ \pi^- e^+ \nu$ | $0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$        |
| $K^+ \to \pi^+ \pi^+ \pi^-$   | $0.002 \pm 0.001_{stat} \pm 0.002_{syst}$                 |
| Upstream background           | $0.050^{+0.090}_{-0.030} _{stat}$                         |



#### 04/06/2019

# 2017 dataset analysis

- Higher beam intensity
- 2016-like selection
- Improvements on:
  - Pile-up treatment in IRC/SAC
  - $\pi^0$  rejection
  - Usage of RICH variables

 $N_K = (1.3 \pm 0.1) \times 10^{12}$ 

 $SES = (0.34 \pm 0.04) \times 10^{-10}$ 

 $N_{\pi\nu\nu}^{exp} = 2.5 \pm 0.4$ 



 $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ 

| Process                          | Expected events in signal regions         |
|----------------------------------|-------------------------------------------|
| $K^+ \to \pi^+ \pi^0(\gamma)$ IB | $0.35 \pm 0.02_{stat} \pm 0.03_{syst}$    |
| $K^+ \to \mu^+ \nu(\gamma)$ IB   | $0.16 \pm 0.01_{stat} \pm 0.05_{syst}$    |
| $K^+ \to \pi^+\pi^- e^+ \nu$     | $0.22 \pm 0.08_{stat}$                    |
| $K^+ \to \pi^+ \pi^+ \pi^-$      | $0.015 \pm 0.008_{stat} \pm 0.015_{syst}$ |
| $K^+ \to \pi^+ \gamma \gamma$    | $0.005\pm0.005_{syst}$                    |
| $K^+ \to l^+ \pi^0 \nu_l$        | $0.012\pm0.012_{syst}$                    |
| Upstream Background              | Analysis on–going                         |

CeV<sup>2</sup>/C<sup>4</sup>] [GeV<sup>2</sup>/C<sup>4</sup>] 80.0

#### Search for invisible vector bosons

Possible extension to SM with a new U(1) symmetry mediated by A' (dark photon)

Search for A' through the decay chain:

$$K^+ \to \pi^+ \pi^0$$
$$\pi^0 \to \gamma A'$$

Master formula:

$$BR(\pi^0 \to \gamma A') = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 \times BR(\pi^0 \to \gamma \gamma)$$

- Normalization:  $K^+ \rightarrow \pi^+ \pi^0$
- Main kinematic variable:  $M_{miss}^2 = (P_K P_\pi P_\gamma)^2$
- No in-time activity in LAV, IRC, SAC
- No extra activity in RICH e CHOD (photon conversions)

Main background:

•  $\pi^0 \rightarrow \gamma \gamma$  with a mis-reconstructed photon



### Background evaluation

Sidebands to scale background:  $0.00005 < M_{miss}^2 < 0.00075 \ GeV^2/c^4$ 

500 ق<sup>2/2</sup> 400 ق Background sample **₽ 300** â 200 100 Event ∆ 0.6 0.7  $M_{\rm miss}^2$  [GeV<sup>2</sup>/ $c^4 \times 10^3$ ] 0.1 0.2 0.3 0.4 0.5 Events / (5×10<sup>-5</sup> GeV<sup>2</sup>/c<sup>4</sup>) 80 Signal search sample 60 **Background sample** 20  $\frac{10}{M_{\rm miss}^2 \, [{\rm GeV}^2/c^4 \times 10^3]}$ 

Signal search sample

Signal region:  $0.00075 < M_{miss}^2 < 0.01765 \ GeV^2/c^4$ O(1) background events with  $4 \times 10^8 \pi^0$  decays

#### Results

No statistically relevant excess has been found

Improvement of previous limits in the range 60-110  $MeV/c^2$  for A' mass



# Search for lepton number violations

Lepton number conservation is an accidental symmetry that emerges from the SM

- Its violation by 2 units could indicate the presence of Majorana neutrinos
- LN violation search with kaons:  $K^+ \rightarrow \pi^- l^+ l^+$ ,  $l = (\mu, e)$  analogous to  $0\nu\beta\beta$



| Current limits (90% CL):                              |             |
|-------------------------------------------------------|-------------|
| $BR(K^+ \to \pi^- e^+ e^+) < 6.4 \times 10^{-10}$     | BNL E865    |
| $BR(K^+ \to \pi^- \mu^+ \mu^+) < 8.6 \times 10^{-11}$ | CERN NA48/2 |

Signal selection

Normalization channels: SM decays  $K^+ \rightarrow \pi^+ l^+ l^-$ 

Blind analysis technique

- 3-tracks vertex, Q=1,  $|p_{3trks} p_K| < 2.5 \text{ GeV/c}$
- Upstream K identification
- Key point: PID (mostly E/p and RICH but also MUV3)
- •Main background:  $K^+ \rightarrow \pi^+ \pi^+ \pi^-$  through
  - particle misID
  - decay in flight

For  $\pi ee$  channel:  $M(ee) > 140 \text{ MeV/c}^2$  to reject  $K^+ \to \pi^+ \pi_D^0$ and  $K^+ \to \pi_D^0 e^+ \nu \quad (\pi_D^0: \pi^0 \to e^+ e^- \gamma)$ 



Search for 
$$K^+ \rightarrow \pi^- e^+ e^+$$

$$N_K = (2.14 \pm 0.07) \times 10^{11}$$

Signal acceptance: 4.98% Expected background events in signal region:  $0.16 \pm 0.03$ Observed events: 0

Upper limit (90% CL):  $BR(K^+ \to \pi^- e^+ e^+) < 2.2 \times 10^{-10}$ 



Search for 
$$K^+ \rightarrow \pi^- \mu^+ \mu^+$$

 $N_K = (7.94 \pm 0.23) \times 10^{11}$ 

Acceptance: 9.81% Expected background events in signal region:  $0.91 \pm 0.41$ Observed events: 1

Upper limit (90% CL):  $BR(K^+ \to \pi^- \mu^+ \mu^+) < 4.2 \times 10^{-11}$ 



# Search for LNV: results

| Channel                         | Previous limit        | NA62 (2017 data)      |
|---------------------------------|-----------------------|-----------------------|
| $K^+ \rightarrow \pi^- e^+ e^+$ | $6.4 \times 10^{-10}$ | $2.2 \times 10^{-10}$ |
| $K^+ \to \pi^- \mu^+ \mu^+$     | $8.6 \times 10^{-11}$ | $4.2 \times 10^{-11}$ |

x3 (2) improvement achieved in  $\pi ee$  ( $\pi \mu \mu$ ) channel

 $\sim 1/3$  of the total 2017-2018 statistics analyzed

#### Conclusions

Broad physics program at NA62 to search for NP with kaons:

 $\succ K^+ \rightarrow \pi^+ \nu \bar{\nu}$ 

> one event observed in 2016 dataset, x10 statistics expected in 2017 sample

> Search for invisible vector bosons

 $\geq$  limits improved in the range  $60 < m_{A'} < 110 \text{ MeV/c}^2$ 

> Search for LNV in kaon decays  $K^+ \rightarrow \pi^- l^+ l^+$ 

> x3 (2) improvement achieved in  $\pi ee (\pi \mu \mu)$  channel

# $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis: signal selection



- 1 downstream track selection
- $\pi^+$  identification
- Photon and multi-track rejection

Selection performances:

- $\sigma(T) \sim O(100 \text{ ps})$
- $\sigma(m_{miss}^2) = 10^{-3} \, \text{GeV}^2/\text{c}^4$
- $\epsilon_{\pi^0} = 3 \times 10^{-8}$
- $\epsilon_{\mu^+} = 10^{-8}$  with 64%  $\pi$  ID efficiency

#### $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis: $K^+ \rightarrow \pi^+ \pi^0(\gamma)$ background



Data-driven background estimation  $N_{\pi\pi(\gamma)}^{bg} = 0.064 \pm 0.007_{stat} \pm 0.006_{syst}$ 

1 event found in control regions (1.5 expected)

#### $K^+ \to \pi^+ \nu \bar{\nu}$ analysis: $K^+ \to \mu^+ \nu(\gamma)$ background



Data-driven background estimation  $N_{\mu\nu(\gamma)}^{bg} = 0.020 \pm 0.003_{stat} \pm 0.003_{syst}$ 

2 events found in control region (1.1 expected)

#### $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis: $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ background



Background estimated with MonteCarlo simulation

$$N_{Ke4}^{bg} = 0.018_{-0.017}^{+0.024}|_{stat} \pm 0.009_{syst}$$

400 M simulated events, 5 validation regions

| Validation region | N Expected | N observed |
|-------------------|------------|------------|
| 1                 | 15.5(4)    | 8          |
| 2                 | 4.0(4)     | 2          |
| 3                 | 3.2(3)     | 3          |
| 4                 | 0.7(1)     | 1          |
| 5                 | 1.2(1)     | 5          |

#### $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis: Upstream background

- Decays along the beamline
- Interactions in GTK3
- Random tracks matched in GTK

Several ways to reject this background:

- $K \pi$  matching
- CHANTI
- Z<sub>vertex</sub>
- «Box cut»

